

We ran all speed tests on Google Colab Pro notebooks for easy reproducibility. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs.

Reproduce by python val.py -data coco.yaml -img 1536 -iou 0.7 -augment TTA Test Time Augmentation includes reflection and scale augmentations.Reproduce by python val.py -data coco.yaml -img 640 -task speed -batch 1 Speed averaged over COCO val images using a AWS p3.2xlarge instance.Reproduce by python val.py -data coco.yaml -img 640 -conf 0.001 -iou 0.65 mAP val values are for single-model single-scale on COCO val2017 dataset.Nano and Small models use hyps, all others use.

